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For the solution of problems which are solvable by the method of factorization 
Cl], different approximate methods have been suggested in recent years: approx- 
imate factorization [ 11, variation and projection methods [Z], and finally, the 

method of orthogonal polynomials [3]. The aim of this paper is to indicate 
(remaining within the limits of the exact solution) a simple method of transform- 
ing the formulas which give the solution of the factorization problem to a form 

which is more convenient for computations and on the basis of this method to 
indicate the exact solutions of the Wiener-Hopf-Fock integral equations of the 
second and the first kind in a form which is more convenient for carrying out the 
calculations. The computational efficiency of the suggested method is illustrated 

in [41. 

1. According to the terminology of [5], by factorization, i. e. the representation of a 

function c (x), given on the closed line (- m, CO) and not vanishing there, in the form 

G (5) = G’, (r) G_ (x) (- cc < 3‘< oc) (1.1) 

where G, (5) and G_ (z) are regular functions, different from zero in the upper and lower 

half-planes and continuous, including the boundary. Without loss of generality, we will 

assume that 
c (:i-32) = 1, G.., (32) =- 1 0.2) 

In addition, we will assume that the logarithmic derivative of the function G (J) is in- 

tegrable on the real axis. 
The solution of the factorization problem is given by the formula [5] 

(1.3) 

We consider the transformation of this formula. All the operations will be performed 
only for the formula for G, (i), since for C_ (z) they are completely similar ; moreover, 
for the most frequent case of an even function G (x) , we have [5] the relation C_ (i) =z 
G, (-2). 

Mapping the upper half-plane of the variable z from the formula (1.3) onto the unit 

circle of the variable ; and the real axis (- 00 < % < X) onto the unit circumference 

y, instead of (1.3) we have 

(1.4) 
I 

_i - 
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Applying to the first integral the method described in L-61, we obtain 

(1.5) 

ln(;(-cctg(r, dq, -. 
C’*siriq, 

Thus, the coefficients of the Maclaurin series, the functions represent, except for constants, 

the Fourier coefficients of the specified function and for their computation we can, in 
general, make use of the known formulas of trigonometric interpolation IJI], 

In special cases the formula [4] m 

(1.6) 

may be useful, which is obtained from the second formula for tz,, from (1.5) by conver- 
sion to integration along the unit circumference and then the mapping of the latter into 
the real axis. In the important special case when G (r) is an even function, the formulas 
(1.5) become simpler 

~~~~~lnG~~g~~~~~, hit= (-,frl isin&d [lnG(tS-$-B)] (1.7 

In order to obtain’these formulas it is necessary to perform the substitution g, = E + 0 
in the first integrals which define k. and h, in (1.5) and to make use of the fact that 
C (2) is even. 

Thus, the desired function G, (z) which occurs in the factorization of the function 
G (z), will be determined by the formula 

(1.8) 

Such a representation is not entirely convenient if the function has to be integrated 
along the real axis. In this case it is of interest to obtain formulas for the coefficients 
of the Maclaurin series of the function m 

c(b)= 2 g,i” (1.9) 

Obviously, go = ehll. 
For the computation of the remaining coefficients we proceed in the following manner. 

On the basis of (1.8) we have h (i) = 1x1 R (t) and therefore g’ (i) = h’ (%) g (5). Sub- 
stituting here the expressions 

m m 

and also the expansions (1.9) and equating the coefficients, we obtain the following 
recursion formula : 
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(1.10) 
m-o 

Below we give an illustration and the development of the suggested method as applied 
in connection with the Wiener-Hopf-Fock integral equation of the second and the first 
kind. 

2. First we consider the equation of the second kind with a particular right-hand 
side 03 

x, (.r) - 5 k (.c - y) x, (j/) dy -7 eipx (Imp > 0; K (5) = h’(- 5)) (2.1) 
0 

assuming, for the sake of simplicity, that the kernel function is even. The solution of 

Eq. (‘2.1) has the form [5] 
X,(XjI G,(P) G+(s)+~~s 

STEi a s+J!J 
(2.2) 

In the case under consideration the function G:(Z) 

G(J) 7 11 - K (x)]-’ =:: G, (x) G_ (x), 

On the basis of (1.8), (1.9) we have the expansion 

factorizes the function 

K (2) = 5 h-(S) P ds 
._ 

-33 
(2.3) 

which inserted into (2.2) gives m 

i T* 

i 1 (2.4) 

X, (J’) 11 - K(p)]-’ riPx + C, (p) 2] g, Rrs 

n==o 

There is another way to proceed. We represent the function (2.2) in a series of Laguerre 
polynomials a3 

X, (2) X 2e-” 2 Xj (P) Lj (221 

(2.5) 

then 3 --a 

xj(p) --: i e--5 
G+(p) 

Lj (2~) x, (x) d.r - z 2n 
y _I:+ (s) (s -I- i)’ ds 

a _-_~ (s -t I’) (3 - v l 
P.6) 

For the computation of the last integral we map the upper half-plane of the variable s 

onto the unit circle of the variable L, i.e. we perform the substitution s = - i (1 + 
1) (t - i)_‘. The integral along the unit circle obtained in this way is computed with 
the aid of the residue theorem and the expansions (1.Q (1.9). As a result we obtain the 

formula 

(2.7) 

Assume now that the integral equation (2.1) has the form 

Then, if 

13 

x (4 - \ k b- - ?A x 04 dr/ = f (4 (x > 0) (2.8) 
?I 

F (n) == 5 eiruf (x) dx (2.9) 

0 
the solution has the form 
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cc 

x (4 = & 
, s F (-- P) x, (4 do C-4.10) 

or on the basis of (2.5) and (2.7) --m 
OD 1 

x (2) = 2e-’ 2 FjLj (2x), Fj z - 2 gyli_T (2.11) 

i=o i-=0 

1 9” 
lm= -s&j- s (2.12) 

--m 

For some particular cases of right-hand sides in (2. 8), this integral can be easily eva- 

luated by the residue theorem. In general we proceed in the following manner. Making 
use of the expansion (2.4), we write 

02 

dp 
n=o 

The substitution p = ctg r/29) leads to the formula 

27% 

1 ’ 
f,=x e s -im(@F* - ctg +q dq 

0 

(2.13) 

(2.14) 

2iF*(a) = (LZ - i) F (-r) 

i. e. the coefficients f,, represent exactly the Fourier coefficients. 

3. In the problems of the theory of elasticity we frequently encounter integral equa- 
tions of the first kind ,9” 

\ k (2. - Y) x (Y) dy z f (4 (z> 0, k (2) = k (-xc)) (3.1) 
. 
6 

We will assume that the Fourier transform of the kernel function is differentiable on the 

real axis, it is different from zero there and at infinity it has the asymptotics 

K (u) = yu21*+l [I + 0 (IL-‘)] (u - m, I P I < l/z) (3.2) 

Without loss of generality, we will assume everywhere in the sequel that y = 1. For 
the integral equation with the particular right-hand side 

00 . 

s 
k (z - y) X, (y) dy = eipx (z, Imp>,O) (3.3) 

0 

we have,asbefore,the formula [S, 81 

X, (I) = - 
h’, (P) 

2ni (3.4) 

where K, (z) is a regular function (except at the point w) , different from zero in the 
upper half-plane and satisfying the functional equation 

K-1 (z) = K, (z) K_ (z) (-=J<z<m) (3.5) 

Taking into account the asymptotics (3.2), we represent K (z) in the form 

K-’ (z) = (z” + 1)“2-t* G (z), G-l (2) = (z? + 1)‘2--1* K (z) (3.6) 
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The function G (z) can be factored out, making use of the formula (1.3), and by the same 
token the solution of equation (3.5) is obtained in the form 

R, (z) = (1 - iz)l’z-F c, (2) (3.7) 

In this case for G, (z) the formula (2.4) should be used. 
For some particular cases of kernel functions, the integral in (3.4) can be reduced by 

the methods of contour integration [8] to a form which is convenient for computations. 
In the general case, the following method is useful. Taking into account the character 
of the singularity of the solution of the equation (3.3) at zero, which follows [3] from 

the asymptotics (3.2), we represent it in the form of the following series of Chebyshev- 

Laguerre polynomials : 

In this case 

x,, (P) = - 
2”-’ * K (p) 

+ 
m K, (s) Im- (s) ds 

s 
(3.9) 

2ni s $- P 
-cc 

I,,- (4 = (3.10) 

0 

Then, in the formula (3.7) we perform the substitution z = - i ([ -I- 1) (5 - I)-‘, and 

afterwards we expand the left-hand side in a Maclaurin series with respect to 5, making 

use of (1.8) and (1.9). As a result we have 
bo 

K+‘,-i Cm1 = \ 3 
j-1 1 2 g.*;i 

i=o 
(3.11) 

We substitute now (3.10) and13.11) into (3.9) and we compute the obtained integral by 
the same method as the integral in (2.6). As a result we obtain 

(3.12) 

Substituting here the expression for g,,* from (3.11) and making use of the relation 

” (p - %),,_, (‘h - PI; 
c* = 2 

[I, n==o 

i-0 
(n - ;) ! , ! (0, u-1,2... 

we finally obtain 

(3.13) 

(3.14) 

The validity of the relation (3.13) can be seen if we consider that C, is the coeffici- 
ent of the Maclaurin series of the function (1 - z):*-~‘~ (1 - z)‘~-:~, obtained from the 
multiplication of the Maclaurin series for each of the factors. 

For the solution of the integral equation (3. l), as in the case of the equation of the 
second kind, the formula (2.10) holds, which, making use of (3.8) and (3.14), can be 
reduced to the form 
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For the integral I,, we have the formula (2.12) with the replacement of G+ (p) by 

K, (p). In this case, for the latter one we can, apart of (3.7), make use of the expansion 

K+(P)= $j f&* i, 
p-i m 

m=o ( ) 
(3.16) 

which follows from (3.11). Its use leads to the formulas (2,13), (2.14) and (2.16) with 

the replacement of gn by gn*. 
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The polar symmetric strain of a viscoelastic thick-walled hollow sphere, whose material 
possesses the property of different resistivity under tension and compression is considered. 
The vessel is subjected to internal pressure p and external tension p which are distri- 
buted uniformly over the surfaces r = a and r =- h (U < 6). Because of the above, the 
vessel is separated into two parts by a spherical surface of radius r = p, which is inde- 
pendent of the quantity p during solution of the corresponding elastic problem [l] even 
when p varies with time t. 


